1,911 research outputs found

    Visual distortion of body size modulates pain perception

    Get PDF
    Pain is a complex subjective experience, that can be shaped by several cognitive, psychological and even contextual variables. For example, simply viewing the body reduces the reported intensity of acute physical pain. We investigated whether this visually induced analgesia can be modulated by the visually depicted size of the stimulated body part. We measured contact heat-pain thresholds, while participants viewed either their own hand or a neutral object, at real size, enlarged, or reduced. Vision of the body was analgesic, increasing heat-pain thresholds by ~ 4°C. Importantly, enlargement of the viewed hand enhanced this analgesia, while looking at a reduced hand decreased it. These results demonstrate that visual distortions of body size modulate sensory components of pain, and reveal a clear functional relation between the perception of pain and the representation of the body

    Fine-grained nociceptive maps in primary somatosensory cortex

    Get PDF
    Topographic maps of the receptive surface are a fundamental feature of neural organization in many sensory systems. While touch is finely mapped in the cerebral cortex, it remains controversial how precise any cortical nociceptive map may be. Given that nociceptive innervation density is relatively low on distal skin regions such as the digits, one might conclude that the nociceptive system lacks fine representation of these regions. Indeed, only gross spatial organization of nociceptive maps has been reported so far. However, here we reveal the existence of fine-grained somatotopy for nociceptive inputs to the digits in human primary somatosensory cortex (SI). Using painful nociceptive-selective laser stimuli to the hand, and phase-encoded fMRI analysis methods, we observed somatotopic maps of the digits in contralateral SI. These nociceptive maps were highly aligned with maps of non-painful tactile stimuli, suggesting comparable cortical representations for, and possible interactions between, mechanoreceptive and nociceptive signals. Our findings may also be valuable for future studies tracking the timecourse and the spatial pattern of plastic changes in cortical organization involved in chronic pain

    Linking pain and the body: neural correlates of visually induced analgesia

    Get PDF
    The visual context of seeing the body can reduce the experience of acute pain, producing a multisensory analgesia. Here we investigated the neural correlates of this “visually induced analgesia” using fMRI. We induced acute pain with an infrared laser while human participants looked either at their stimulated right hand or at another object. Behavioral results confirmed the expected analgesic effect of seeing the body, while fMRI results revealed an associated reduction of laser-induced activity in ipsilateral primary somatosensory cortex (SI) and contralateral operculoinsular cortex during the visual context of seeing the body. We further identified two known cortical networks activated by sensory stimulation: (1) a set of brain areas consistently activated by painful stimuli (the so-called “pain matrix”), and (2) an extensive set of posterior brain areas activated by the visual perception of the body (“visual body network”). Connectivity analyses via psychophysiological interactions revealed that the visual context of seeing the body increased effective connectivity (i.e., functional coupling) between posterior parietal nodes of the visual body network and the purported pain matrix. Increased connectivity with these posterior parietal nodes was seen for several pain-related regions, including somatosensory area SII, anterior and posterior insula, and anterior cingulate cortex. These findings suggest that visually induced analgesia does not involve an overall reduction of the cortical response elicited by laser stimulation, but is consequent to the interplay between the brain's pain network and a posterior network for body perception, resulting in modulation of the experience of pain

    The effects of immediate vision on implicit hand maps

    Get PDF
    Perceiving the external spatial location of the limbs using position sense requires that immediate proprioceptive afferent signals be combined with a stored body model specifying the size and shape of the body. Longo and Haggard (Proc Natl Acad Sci USA 107:11727–11732, 2010) developed a method to isolate and measure this body model in the case of the hand in which participants judge the perceived location in external space of several landmarks on their occluded hand. The spatial layout of judgments of different landmarks is used to construct implicit hand maps, which can then be compared with actual hand shape. Studies using this paradigm have revealed that the body model of the hand is massively distorted, in a highly stereotyped way across individuals, with large underestimation of finger length and overestimation of hand width. Previous studies using this paradigm have allowed participants to see the locations of their judgments on the occluding board. Several previous studies have demonstrated that immediate vision, even when wholly non-informative, can alter processing of somatosensory signals and alter the reference frame in which they are localised. The present study therefore investigated whether immediate vision contributes to the distortions of implicit hand maps described previously. Participants judged the external spatial location of the tips and knuckles of their occluded left hand either while being able to see where they were pointing (as in previous studies) or while blindfolded. The characteristic distortions of implicit hand maps reported previously were clearly apparent in both conditions, demonstrating that the distortions are not an artefact of immediate vision. However, there were significant differences in the magnitude of distortions in the two conditions, suggesting that vision may modulate representations of body size and shape, even when entirely non-informative

    Beyond language: The unspoken sensory-motor representation of the tongue in non-primates, non-human and human primates

    Get PDF
    The English idiom “on the tip of my tongue” commonly acknowledges that something is known, but it cannot be immediately brought to mind. This phrase accurately describes sensorimotor functions of the tongue, which are fundamental for many tongue-related behaviors (e.g., speech), but often neglected by scientific research. Here, we review a wide range of studies conducted on non-primates, non-human and human primates with the aim of providing a comprehensive description of the cortical representation of the tongue's somatosensory inputs and motor outputs across different phylogenetic domains. First, we summarize how the properties of passive non-noxious mechanical stimuli are encoded in the putative somatosensory tongue area, which has a conserved location in the ventral portion of the somatosensory cortex across mammals. Second, we review how complex self-generated actions involving the tongue are represented in more anterior regions of the putative somato-motor tongue area. Finally, we describe multisensory response properties of the primate and non-primate tongue area by also defining how the cytoarchitecture of this area is affected by experience and deafferentation

    Owning an overweight or underweight body: distinguishing the physical, experienced and virtual body

    Get PDF
    Our bodies are the most intimately familiar objects we encounter in our perceptual environment. Virtual reality provides a unique method to allow us to experience having a very different body from our own, thereby providing a valuable method to explore the plasticity of body representation. In this paper, we show that women can experience ownership over a whole virtual body that is considerably smaller or larger than their physical body. In order to gain a better understanding of the mechanisms underlying body ownership, we use an embodiment questionnaire, and introduce two new behavioral response measures: an affordance estimation task (indirect measure of body size) and a body size estimation task (direct measure of body size). Interestingly, after viewing the virtual body from first person perspective, both the affordance and the body size estimation tasks indicate a change in the perception of the size of the participant’s experienced body. The change is biased by the size of the virtual body (overweight or underweight). Another novel aspect of our study is that we distinguish between the physical, experienced and virtual bodies, by asking participants to provide affordance and body size estimations for each of the three bodies separately. This methodological point is important for virtual reality experiments investigating body ownership of a virtual body, because it offers a better understanding of which cues (e.g. visual, proprioceptive, memory, or a combination thereof) influence body perception, and whether the impact of these cues can vary between different setups

    The effects of instrumental action on perceptual hand maps

    Get PDF
    Perceiving the external spatial location of body parts using position sense requires that immediate proprioceptive afferent signals be integrated with information about body size and shape. Longo and Haggard (Proc Natl Acad Sci USA 107:11727–11732, 2010) developed a method to measure perceptual hand maps reflecting this metric information about body size and shape. In this paradigm, participants indicate the perceived location of landmarks on their occluded hand by pointing with a long baton held in their other hand. By comparing the relative location of judgments of different hand landmarks, perceptual hand maps can be constructed and compared to actual hand structure. The maps show large and highly stereotyped distortions. Here, I investigated the potential effect of biases related to active motor control of the hand doing the pointing in these distortions. Participants localized the fingertip and knuckle of each finger on their occluded left hand either by actively pointing with a baton held in their right hand (pointing condition) or by giving verbal commands to an experimenter on how to move the baton (verbal condition). Similar distortions were clearly apparent in both conditions, suggesting that they are not an artifact of motor control biases related to the pointing hand

    No specific relationship between hypnotic suggestibility and the rubber hand illusion

    Get PDF

    Anisotropies of tactile distance perception on the face

    Get PDF
    The distances between pairs of tactile stimuli oriented across the width of the hand dorsum are perceived as about 40% larger than equivalent distances oriented along the hand length. Clear anisotropies of varying magnitudes have been found on different sites on the limbs and less consistently on other parts of the body, with anisotropies on the center of the forehead, but not on the belly. Reported anisotropies on the center of the forehead, however, might reflect an artefact of categorical perception from the face midline, which might be comparable to the expansion of tactile distance perception observed for stimuli presented across joint boundaries. To test whether tactile anisotropy is indeed a general characteristic of the tactile representation of the face, we assessed the perceived distance between pairs of touches on the cheeks and three locations on the forehead: left, right, and center. Consistent with previous results, a clear anisotropy was apparent on the center of the forehead. Importantly, similar anisotropies were also evident on the left and right sides of the forehead and both cheeks. These results provide evidence that anisotropy of perceived tactile distance is not a specific feature of tactile organization at the limbs but it also exists for the face, and further suggest that the spatial distortions found for tactile distances that extend across multiple body parts are not present for stimuli that extend across the body midline
    • …
    corecore